
J .  Fluid Mech. (1980), vol. 98, part 2, pp. 273-284 

Printed in Ureat Britain 
273 

Linear stability of Poiseuille flow in a circular pipe 
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Correction of an error in the matrix elements used by Salwen & Grosch (1972) has 
brought the results of the matrix-eigenvalue calculation of the linear stability of 
Hagen-Poiseuille flow into complete agreement with the numerical integration results 
of Lessen, Sadler & Liu (1968) for azimuthal index n = 1.  The n = 0 results were 
unaffected by the error and the effect of the error for n > 1 is smaller than for n = 1. 
The new calculations confirm the conclusion that the flow is stable to  infinitesimal 
disturbances. 

Further calculations have led to the discovery of a degeneracy a t  Reynolds number 
R = 61.452 5 0.003 and wavenumber a = 0.9874 k 0,0001, where the second and third 
eigenmodes have equal complex wave speeds. The variation of wave speed for these 
two modes has been studied in the vicinity of the degeneracy and shows similarities 
to the behaviour near the degeneracies found by Cotton and Salwen (see Cotton 1977) 
for rotating Hagen-Poiseuille flow. Finally, new results are given for n = 10 and 30; 
the n = 1 results are extended to R = lo6; and new results are presented for the 
variation of the wave speed with aR a t  high Reynolds number. The high-R results 
confirm both Burridge & Drazin’s (1969) slow-mode approximation and more recent 
fast-mode results of Burridge. 

I n  1972, two of us published the results of a matrix-eigenvalue calculation (Sslwen 
& Grosch 1972; hereinafter referred to as SG) of the linear stability of Poiseuille flow 
in a circular pipe to  both axisymmetric and non-axisymmetric disturbances. That, 
paper was one of a number of papers (see SG for references) which led to the conclusion 
that Hagen-Poiseuille flow is stable to infinitesimal disturbances. There was, however, 
some doubt about the accuracy of the numerical results because of differences of up 
to 30 yo between SG and the numerical integration of Lessen, Sadler & Liu ( 1  968; 
hereinafter referred to as LSL). 

I n  the course of extending the techniques of SG to more general problems, we had 
occasion to re-do some of the calculations and we discovered a sign error in one term 
of the matrix elements, the correction of which eliminated the disagreement with 
LSL (Cotton, Salwen & Grosch 1975; Cotton 1977). We report here on those corrections 
as well as on newer calculations with the corrected matrix. 

The method of calculation has been described in SG. Most of the results reported 
here were obtained with a new program, designed to  be extendable to an annular 
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geometry, in which the matrices are obtained in double precision (19 significant 
figures) and the eigenvalues are calculated in single precision (8 significant figures) 
on the DEC system-10. Use of a new double-precision Bessel function routine (Cotton 
& Salwen 1976) has extended the range to 0 < n < 30. Some of the eigenvalues have 
been calculated in double precision as a test of round-off error and many have been 
calculated for various matrix sizes as a test of truncationerror. Numerous checks 
against the (corrected) single-precision routine of SG have also been run. Since the 
two programs start with formulae which, though mathematically equivalent, are 
considerably different in form, agreement between their results is a check against 
programming error as well as round-off error. (It was the initial disagreement between 
these programs which led to the discovery of the error in SG.) 

The error in the SG program occurred only for n $. 0; therefore, the n = 0 results 
in SG need no correction. For n = 1, we present, in table 1 ,  a comparison between 
complex wave speeds calculated by LSL-I-, by the uncorrected SG program, and by the 
corrected program (labelled CSG).S Except for a 4 yo difference in mode 3 a t  R = 100 
(which we believe to be a misprint in the LSL results), our new results agree with those 
of LSL to four or five significant figures. I n  figure I ,  we show the corrected wave 
speeds for n = 1 ,  a = 1, 10 < R < 106.  To extend the earlier results to R = lo6, we 
used a maximum matrix size of 200 x 200. 

I n  figure 1, modes 2 and 3 appear to be degenerate a t  R - 61, since the real and 
imaginary parts, cB and c4 of c both appear to be equal for the two modes. A detailed 
study of the data reveals, however, that  the cw curves for the two modes cross but the 
cg curves approach each other closely and then move apart; for this reason, we pointed 
out in SG that this was not a degeneracy. The recent discovery (Cotton 1977) of 
degeneracies in the eigenvalues for rotating Poiseuille flow has led us to investigate 
this point more closely. 

Figure 2 shows expanded plots of cw and c9 us. aR for the two nearly-degenerate 
modes, a t  a = 1.00 and 0.97, in the range 57 < aR < 63. For a = 1.00 the modes are 
labelled 2 and 3; for a = 0.97, they are labelled 2' and 3'. It is clear from this figure 
that, a t  a = 1.00, the real parts cross but not the imaginary parts while, a t  a = 0.97, 
the imaginary parts cross but not the real parts. Apart from this crossing behaviour 
(which makes it impossible to uniquely order the modes without destroying the 
continuity of c as a function of a) ,  the eigenvalues are quite similar a t  the two 
values of a. 

At each a between 0.97 and 1, there is a value of R a t  which either cw or c4 is the 
same for the two modes. For one value of u in the range (simultaneously the highest 
for which c y  is the same and the lowest for which c, is the same), there is a value of 
R for which cw and c4 are both the same; i.e. the two modes have the same complex 
wave speed c2 = c3.  

I n  figure 3, we have plotted the curves for em = cM and czg = cSg in the a, (aR) 
plane. They appear to  be two parts of a single smooth curve, joining a t  the point of 
degeneracy where c2 = c3. The degeneracy occurs a t  a = 0.9874 & 0.0001, aR = 60.678 
- + 0.001 (R N 61.452). As a -+ 0, aR -+ - 63.6 along the cZ4 = c39 curve and, as aR -+ 0, 
a -+ - 2.5 along the cm = c3% curve. 

t We again thank these authors for their numerical results which they sent us when we were 
preparing the figures of SG. 

$ The complex wave speed c,  is defined by the assumed form eaa(z-ct)+tnfl for the disturbances. 
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FIGURE 1. Real and imaginary parts of the complex wave speed, c ,  as a function of the Reynolds 
number, R ,  for n = 1, a = 1.00. The modes shown are the four least stable modes as R+O. At 
R = iOS, they are the ist,  19th, 2nd and 15th modes respectively. 

At the point of degeneracy, there can, in principle, be eithertwo linearlyindependent 
eigenfunctions corresponding to the same eigenvalue or one eigenfunction and one 
generalized eigenfunction (see, e.g. Di Prima & Habetler 1969). We cannot investigate 
this directly, because our calculation yields a numerical estimate of the point of 
degeneracy - not the exact value. At any point we choose, the eigenvalues will not 
be identical, so there must be two different eigenvectors. To determine whether there 
are two eigenvectors a t  the point of degeneracy, we studied the behaviour of 

the cosine of the ‘angle’ between the numerical eigenvectors, for (a, R) near the point 
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FIGURE 2. Real and imaginary parts of the complex wave speed, c, as a function of aR for n = 1, 
a = 1.00 and 0.97. The modes shown are the 2nd and 3rd least stable modes as R -to. They are 
labelled (2,3) for a = 1.00 and (2', 3') for a = 0.97. 

of degeneracy. As (a, R) gets closer to the point of degeneracy, our values for cos 
get closer to 1, reaching 0.999998 at the closest point. This indicates that the two 
eigenvectors approach each other as (a,  R) approaches the point of degeneracy, so that 
there is one eigenvector and one generalized eigenvector corresponding to the de- 
generate eigenvalue. 

As examples of results for higher n, we present, in figures 4 and 5, the variation of 
c with R for five and four modes, respectively, at n = 10 and 30, a = 1. Figure 4, for 
n = 10, shows similar features to figure 1 - many crossings, a near degeneracy between 
modes 4 and 5 a t  R - 1380, and a division into 'fast ' and ' slow ' modes (with c -+ 1 
and 0 respectively) for high R - but the change-over from low- to high-R behaviour 
takes place a t  a somewhat higher Reynolds number. Figure 5 is much simpler, at  
least partly because all the modes plotted (the four least-stable modes as R -+ 0 )  are 
slow modes at high R. 

Extension of our calculations to higher Reynolds numbers (by means of larger 
matrices) has made possible a further study of the high R behaviour of the eigenvalues 
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aR 

FIGURE 3. The curves c2% = ca and csy = c s y  in the a, (aR) plane. 0, cu = c a y ;  +, C- = cssp; 
@, c2 = c3, degeneracy. The arrow points to the location of the degeneracy at a = 0.9874 rt 0.0001, 
aR = 60.678+ 0.0001 (R N 61.452). The error in the location of each computed point is at least 
two orders of magnitude less than the size of the symbols. 

for the ‘fast’ and ‘slow’ eigenmodes. As in SG, we have tried to  fit our results to the 
forms given by Burridge & Drazin (1969), 

c = 1 -h/(aR)$, ( 2 )  

c = pu/(aW (3) 

for ‘fast’ modes and 

for ‘slow’ modes. 
I n  the case of the fast modes, we were able to fit our high-R, low-a results to ( 2 )  

for a number of modes, with h essentially constant for a R  2 105, a 5 0.1 and approxi- 
mately constant for a R  2 lo4, a 5 1.  Table 2 lists the values of h obtained for 1 6 n 6 9 
and figure 6 shows the location in the complex plane of these coefficients for 1 6 n < 6. 
Our calculated results occur in pairs which are symmetrical about the line arg ( A )  = &r 
and lie approximately on two lines nearly parallel to it. Burridge & Drazin no longer 
claim that the approximation used in their paper is valid for these low-lying modes. 
Instead, Burridge has carried out a new calculation of the coefficient, A, for the least 
stable mode for 1 6 n 6 l0.t Burridge’s results for n 6 9 are included in table 2 and 
are in good agreement with our results for n < 7. 

t D. M. Burridge & P. G. Drazin, private communication. 
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FIGURE 4. Real and imaginary parts of the complex wave speed, c ,  as a function of the Reynolds 
number, R ,  for n = 10, a = 1.00. The modes shown are the five least stable modes as R -+ 0. 

For the slow modes, our values of (aR)+c are not constant, but vary slowly with aR, 
presumably because we have not reached sufficiently high values of aR. We therefore 
fit our wave speeds for aR = 5 x i O 4 , i  x lo5 and 2 x i O 5 , O  < n < 9 to the form 

c = P / ( m  +,Ul/(W+ +,U,l(aR) (4) 

in order to obtain an extrapolation to the value of p as aR -+ co. Some of our results 
are presented in table 3, along with coefficients calculated from the formulae of 
Burridge & Drazin. The remarkable agreement with their n-independent theory is 
characteristic of all of our results for p. 
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FIQURE 5. Real and imaginary parts of the complex wave speed as a function of the Reynolds 
number, R, for n = 30, a = 1.00. The modes shown are the four least stable modes as R + O .  
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