Linear stability of Poiseuille flow in a circular pipe

By HAROLD SALWEN, FREDRICK W. COTTON

Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

AND CHESTER E. GROSCH
Department of Oceanography and Department of Mathematics, Old Dominion University, Norfolk, Virginia 23508
(Received 16 August 1979)
Correction of an error in the matrix elements used by Salwen \& Grosch (1972) has brought the results of the matrix-eigenvalue calculation of the linear stability of Hagen-Poiseuille flow into complete agreement with the numerical integration results of Lessen, Sadler \& Liu (1968) for azimuthal index $n=1$. The $n=0$ results were unaffected by the error and the effect of the error for $n>1$ is smaller than for $n=1$. The new calculations confirm the conclusion that the flow is stable to infinitesimal disturbances.

Further calculations have led to the discovery of a degeneracy at Reynolds number $R=61.452 \pm 0.003$ and wavenumber $\alpha=0.9874 \pm 0.0001$, where the second and third eigenmodes have equal complex wave speeds. The variation of wave speed for these two modes has been studied in the vicinity of the degeneracy and shows similarities to the behaviour near the degeneracies found by Cotton and Salwen (see Cotton 1977) for rotating Hagen-Poiseuille flow. Finally, new results are given for $n=10$ and 30; the $n=1$ results are extended to $R=10^{6}$; and new results are presented for the variation of the wave speed with αR at high Reynolds number. The high $-R$ results confirm both Burridge \& Drazin's (1969) slow-mode approximation and more recent fast-mode results of Burridge.

In 1972, two of us published the results of a matrix-eigenvalue calculation (Salwen \& Grosch 1972; hereinafter referred to as SG) of the linear stability of Poiseuille flow in a circular pipe to both axisymmetric and non-axisymmetric disturbances. That paper was one of a number of papers (see SG for references) which led to the conclusion that Hagen-Poiseuille flow is stable to infinitesimal disturbances. There was, however, some doubt about the accuracy of the numerical results because of differences of up to 30% between SG and the numerical integration of Lessen, Sadler \& Liu (1968; hereinafter referred to as LSL).

In the course of extending the techniques of SG to more general problems, we had occasion to re-do some of the calculations and we discovered a sign error in one term of the matrix elements, the correction of which eliminated the disagreement with LSL (Cotton, Salwen \& Grosch 1975; Cotton 1977). We report here on those corrections as well as on newer calculations with the corrected matrix.

The method of calculation has been described in SG. Most of the results reported here were obtained with a new program, designed to be extendable to an annular
geometry, in which the matrices are obtained in double precision (19 significant figures) and the eigenvalues are calculated in single precision (8 significant figures) on the DEC system-10. Use of a new double-precision Bessel function routine (Cotton \& Salwen 1976) has extended the range to $0 \leqslant n \leqslant 30$. Some of the eigenvalues have been calculated in double precision as a test of round-off error and many have been calculated for various matrix sizes as a test of truncationerror. Numerous checks against the (corrected) single-precision routine of $S G$ have also been run. Since the two programs start with formulae which, though mathematically equivalent, are considerably different in form, agreement between their results is a check against programming error as well as round-off error. (It was the initial disagreement between these programs which led to the discovery of the error in SG.)

The error in the SG program occurred only for $n \neq 0$; therefore, the $n=0$ results in SG need no correction. For $n=1$, we present, in table 1, a comparison between complex wave speeds calculated by LSL \dagger, by the uncorrected SG program, and by the corrected program (labelled CSG). \ddagger Except for a $\frac{1}{2} \%$ difference in mode 3 at $R=100$ (which we believe to be a misprint in the LSL results), our new results agree with those of LSL to four or five significant figures. In figure 1, we show the corrected wave speeds for $n=1, \alpha=1,10 \leqslant R \leqslant 10^{6}$. To extend the earlier results to $R=10^{6}$, we used a maximum matrix size of 200×200.

In figure 1 , modes 2 and 3 appear to be degenerate at $R \sim 61$, since the real and imaginary parts, $c_{\mathscr{R}}$ and $c_{\mathscr{F}}$ of c both appear to be equal for the two modes. A detailed study of the data reveals, however, that the $c_{\mathscr{R}}$ curves for the two modes cross but the $c_{\mathscr{f}}$ curves approach each other closely and then move apart; for this reason, we pointed out in SG that this was not a degeneracy. The recent discovery (Cotton 1977) of degeneracies in the eigenvalues for rotating Poiseuille flow has led us to investigate this point more closely.

Figure 2 shows expanded plots of $c_{\mathscr{R}}$ and $c_{\mathscr{g}} v s . \alpha R$ for the two nearly-degenerate modes, at $\alpha=1.00$ and 0.97 , in the range $57 \leqslant \alpha R \leqslant 63$. For $\alpha=1.00$ the modes are labelled 2 and 3 ; for $\alpha=0.97$, they are labelled 2^{\prime} and 3^{\prime}. It is clear from this figure that, at $\alpha=1.00$, the real parts cross but not the imaginary parts while, at $\alpha=0.97$, the imaginary parts cross but not the real parts. Apart from this crossing behaviour (which makes it impossible to uniquely order the modes without destroying the continuity of c as a function of α), the eigenvalues are quite similar at the two values of α.

At each α between 0.97 and 1 , there is a value of R at which either $c_{\mathscr{R}}$ or $c_{\mathscr{I}}$ is the same for the two modes. For one value of α in the range (simultaneously the highest for which $c_{\mathscr{A}}$ is the same and the lowest for which $c_{\mathscr{R}}$ is the same), there is a value of R for which $c_{\mathscr{R}}$ and $c_{\mathscr{I}}$ are both the same; i.e. the two modes have the same complex wave speed $c_{2}=c_{3}$.

In figure 3, we have plotted the curves for $c_{2 \mathscr{R}}=c_{3 \mathscr{R}}$ and $c_{2 \mathscr{I}}=c_{3 \mathscr{I}}$ in the $\alpha,(\alpha R)$ plane. They appear to be two parts of a single smooth curve, joining at the point of degeneracy where $c_{2}=c_{3}$. The degeneracy occurs at $\alpha=0.9874 \pm 0.0001, \alpha R=60.678$ $\pm 0.001(R \sim 61.452)$. As $\alpha \rightarrow 0, \alpha R \rightarrow \sim 63.6$ along the $c_{2 g}=c_{3 \mathscr{g}}$ curve and, as $\alpha R \rightarrow 0$, $\alpha \rightarrow \sim 2 \cdot 5$ along the $c_{2 \mathscr{R}}=c_{3 \mathscr{R}}$ curve.

[^0]| R | MODE 1 | | MODE 2 | | MODE 3 | | MODE 4 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.54835 | 0.15782 | $0 \cdot 55089$ | $0 \cdot 36044$ | 0.78718 | $0 \cdot 48330$ | 0.66069 | 0.74845 | SG |
| | 0.57256 | 0.14714 | 0.55198 | $0 \cdot 37446$ | 0.78735 | $0 \cdot 47946$ | $0 \cdot 66247$ | 0.74907 | CSG |
| | 0.57256 | 0.14713 | 0.55198 | 0.37446 | 0.78250 | $0 \cdot 47946$ | 0.66247 | 0.74907 | LSL |
| 160 | $0 \cdot 61469$ | 0.15706 | 0.50007 | $0 \cdot 20143$ | 0.81672 | 0.37765 | 0.60260 | 0.45140 | SG |
| | $0 \cdot 61801$ | $0 \cdot 13141$ | 0.52113 | $0 \cdot 22954$ | 0.81713 | $0 \cdot 37479$ | $0 \cdot 60381$ | 0.45334 | CSG |
| | $0 \cdot 61799$ | $0 \cdot 13141$ | 0.52136 | 0.22946 | 0.81712 | $0 \cdot 37483$ | 0.60380 | 0.45334 | LSL |
| 200 | $0 \cdot 64956$ | 0.14753 | $0 \cdot 48195$ | $0 \cdot 17881$ | 0.83394 | 0.33925 | 0.57535 | 0.34003 | SG |
| | $0 \cdot 64527$ | 0.12921 | 0.51116 | $0 \cdot 20266$ | $0 \cdot 83430$ | $0 \cdot 33702$ | 0.57487 | 0.33814 | CSG |
| | $0 \cdot 64526$ | 0. 12920 | $0 \cdot 51117$ | 0.20265 | 0.83429 | $0 \cdot 33703$ | 0.57486 | 0.33813 | LSL |
| 240 | 0.67946 | 0.14411 | $0 \cdot 47256$ | 0.17355 | 0.84789 | $0 \cdot 31097$ | 0.55430 | 0.26181 | SG |
| | 0.67138 | 0. 13231 | $0 \cdot 50843$ | 0.21034 | 0.84825 | $0 \cdot 30920$ | 0.55013 | $0 \cdot 23976$ | CSG |
| | 0.67138 | 0.13231 | 0.50844 | 0.21033 | 0.84824 | 0.30920 | 0.55011 | $0 \cdot 23976$ | LSL |
| 300 | 0.71888 | $0 \cdot 13396$ | $0 \cdot 45212$ | $0 \cdot 17860$ | 0.86439 | 0.27924 | 0.53878 | $0 \cdot 12939$ | SG |
| | 0.71295 | 0.12900 | $0 \cdot 45788$ | $0 \cdot 21300$ | 0.86478 | $0 \cdot 27793$ | 0.56173 | 0.16498 | CSG |
| | 0.71286 | $0 \cdot 12907$ | $0 \cdot 45789$ | $0 \cdot 21300$ | 0.86478 | 0.27793 | 0.56171 | $0 \cdot 16497$ | LSL |
| 600 | 0.80470 | 0.09267 | 0.36680 | $0 \cdot 17004$ | 0.90545 | 0.19749 | 0.48810 | $0 \cdot 11884$ | SG |
| | $0 \cdot 80258$ | 0.09101 | $0 \cdot 36518$ | 0.18222 | 0.90587 | 0.19697 | 0.51585 | $0 \cdot 11474$ | CSG |
| | - | - | $0 \cdot 36519$ | $0 \cdot 18222$ | - | - | 0.51583 | $0 \cdot 11472$ | LSL |
| 1000 | 0.84809 | 0.07152 | $0 \cdot 31064$ | $0 \cdot 15347$ | 0.92698 | 0.15296 | 0.44668 | 0.08558 | SG |
| | 0.84675 | 0.07086 | $0 \cdot 30947$ | 0.15973 | 0.92730 | 0.15270 | $0 \cdot 46916$ | 0.09117 | CSG |
| | 0.84675 | 0.07086 | - | - | 0.92730 | 0.15270 | 0.46924 | 0.09090 | LSL |
| 3000 | 0.91187 | 0.04132 | $0 \cdot 21715$ | $0 \cdot 11518$ | 0.95806 | 0.08838 | 0.36189 | 0.04784 | SG |
| | 0.91147 | 0.04127 | $0 \cdot 21679$ | $0 \cdot 11688$ | 0.95821 | 0.08835 | 0.37095 | 0.06168 | CSG |
| | 0.91147 | 0.04129 | - | - | - | - | 0.371 | 0.0616 | LSL |
| 6000 | 0.93756 | 0.02926 | 0.17316 | 0.09409 | 0.97041 | 0.06253 | 0.31205 | 0.03909 | SG |
| | 0.93738 | 0.02927 | $0 \cdot 17299$ | 0.09486 | 0.97049 | 0.06253 | 0.31332 | 0.05216 | CSG |
| | 0.93737 | 0.02926 | - | - | - | - | 0.313 | 0.0521 | LSL |
| 9600 | 0.95059 | 0.02315 | $0 \cdot 14846$ | 0.08164 | 0.97663 | 0.04945 | 0.27946 | 0.03712 | SG |
| | 0.95048 | 0.02317 | 0.14836 | 0.08209 | 0.97668 | $0 \cdot 04946$ | 0.27681 | 0.04760 | CSG |
| | - | - | - | - | - | - | 0.277 | 0.0476 | LSL |
| Table 1. Calculated complex wave speeds, for $n=1, \alpha=1$, obtained with uncorrected matrix (SG), corrected matrix (CSG) and integration (LSL). All of the imaginary parts are negative, but the negative signs have been omitted for clarity. | | | | | | | | | |

Figure 1. Real and imaginary parts of the complex wave speed, c, as a function of the Reynolds number, R, for $n=1, \alpha=1 \cdot 00$. The modes shown are the four least stable modes as $R \rightarrow 0$. At $R=10^{6}$, they are the $1 \mathrm{st}, 19 \mathrm{th}, 2 \mathrm{nd}$ and 15 th modes respectively.

At the point of degeneracy, there can, in principle, be either two linearly independent eigenfunctions corresponding to the same eigenvalue or one eigenfunction and one generalized eigenfunction (see, e.g. Di Prima \& Habetler 1969). We cannot investigate this directly, because our calculation yields a numerical estimate of the point of degeneracy - not the exact value. At any point we choose, the eigenvalues will not be identical, so there must be two different eigenvectors. To determine whether there are two eigenvectors at the point of degeneracy, we studied the behaviour of

$$
\begin{equation*}
\cos \theta_{23}=\frac{\left|\left(v_{2}, v_{3}\right)\right|}{\left[\left(v_{2}, v_{2}\right)\left(v_{3}, v_{3}\right)\right]^{\frac{1}{2}}}, \tag{1}
\end{equation*}
$$

the cosine of the 'angle' between the numerical eigenvectors, for (α, R) near the point

Figure 2. Real and imaginary parts of the complex wave speed, c, as a function of αR for $n=1$, $\alpha=1.00$ and 0.97 . The modes shown are the 2 nd and 3rd least stable modes as $R \rightarrow 0$. They are labelled $(2,3)$ for $\alpha=1.00$ and ($2^{\prime}, 3^{\prime}$) for $\alpha=0.97$.
of degeneracy. As (α, R) gets closer to the point of degeneracy, our values for $\cos \theta_{23}$ get closer to 1 , reaching 0.999998 at the closest point. This indicates that the two eigenvectors approach each other as (α, R) approaches the point of degeneracy, so that there is one eigenvector and one generalized eigenvector corresponding to the degenerate eigenvalue.

As examples of results for higher n, we present, in figures 4 and 5 , the variation of c with R for five and four modes, respectively, at $n=10$ and $30, \alpha=1$. Figure 4, for $n=10$, shows similar features to figure 1 - many crossings, a near degeneracy between modes 4 and 5 at $R \sim 1380$, and a division into 'fast' and 'slow' modes (with $c \rightarrow 1$ and 0 respectively) for high R - but the change-over from low- to high- R behaviour takes place at a somewhat higher Reynolds number. Figure 5 is much simpler, at least partly because all the modes plotted (the four least-stable modes as $R \rightarrow 0$) are slow modes at high R.

Extension of our calculations to higher Reynolds numbers (by means of larger matrices) has made possible a further study of the high R behaviour of the eigenvalues

Figure 3. The curves $c_{2 \mathscr{R}}=c_{3 \mathscr{R}}$ and $c_{2 \mathscr{F}}=c_{3 \mathscr{I}}$ in the $\alpha,(\alpha R)$ plane. $\left(\mathbb{1}, c_{2 \mathscr{F}}=c_{3 \mathscr{I}} ;+, c_{2 \mathscr{R}}=c_{3 \mathscr{R}} ;\right.$ $\oplus, c_{2}=c_{3}$, degeneracy. The arrow points to the location of the degeneracy at $\alpha=0.9874 \pm 0.0001$, $\alpha R=60.678 \pm 0.0001$ ($R \sim 61 \cdot 452$). The error in the location of each computed point is at least two orders of magnitude less than the size of the symbols.
for the 'fast' and 'slow' eigenmodes. As in SG, we have tried to fit our results to the forms given by Burridge \& Drazin (1969),

$$
\begin{equation*}
c=1-\lambda /(\alpha R)^{\frac{1}{2}}, \tag{2}
\end{equation*}
$$

for 'fast' modes and

$$
\begin{equation*}
c=\mu /(\alpha R)^{\frac{1}{3}}, \tag{3}
\end{equation*}
$$

for 'slow' modes.
In the case of the fast modes, we were able to fit our high R, low- α results to (2) for a number of modes, with λ essentially constant for $\alpha R \gtrsim 10^{5}, \alpha \lesssim 0 \cdot 1$ and approximately constant for $\alpha R \gtrsim 10^{4}, \alpha \lesssim 1$. Table 2 lists the values of λ obtained for $1 \leqslant n \leqslant 9$ and figure 6 shows the location in the complex plane of these coefficients for $1 \leqslant n \leqslant 6$. Our calculated results occur in pairs which are symmetrical about the line $\arg (\lambda)=\frac{1}{4} \pi$ and lie approximately on two lines nearly parallel to it. Burridge \& Drazin no longer claim that the approximation used in their paper is valid for these low-lying modes. Instead, Burridge has carried out a new calculation of the coefficient, λ, for the least stable mode for $1 \leqslant n \leqslant 10 . \dagger$ Burridge's results for $n \leqslant 9$ are included in table 2 and are in good agreement with our results for $n \leqslant 7$.
\dagger D. M. Burridge \& P. G. Drazin, private communication.

Figure 4. Real and imaginary parts of the complex wave speed, c, as a function of the Reynolds number, R, for $n=10, \alpha=1 \cdot 00$. The modes shown are the five least stable modes as $R \rightarrow 0$.

For the slow modes, our values of $(\alpha R)^{\frac{1}{s}} c$ are not constant, but vary slowly with αR, presumably because we have not reached sufficiently high values of αR. We therefore fit our wave speeds for $\alpha R=5 \times 10^{4}, 1 \times 10^{5}$ and $2 \times 10^{5}, 0 \leqslant n \leqslant 9$ to the form

$$
\begin{equation*}
c=\mu /(\alpha R)^{\frac{1}{3}}+\mu_{1} /(\alpha R)^{\frac{2}{3}}+\mu_{2} /(\alpha R) \tag{4}
\end{equation*}
$$

in order to obtain an extrapolation to the value of μ as $\alpha R \rightarrow \infty$. Some of our results are presented in table 3, along with coefficients calculated from the formulae of Burridge \& Drazin. The remarkable agreement with their n-independent theory is characteristic of all of our results for μ.

Figure 5. Real and imaginary parts of the complex wave speed as a function of the Reynolds number, R, for $n=30, \alpha=1 \cdot 00$. The modes shown are the four least stable modes as $R \rightarrow 0$.

Figure 6. A plot of the numerical results for the coefficient λ in equation (2) (fast mode approximation) for $1 \leqslant n \leqslant 6$. The numerical results fall along two nearly-parallel lines, symmetrical about the dashed line, $\lambda_{\mathscr{R}}=\lambda_{\mathscr{I}}$. The n values are: $\square, 1 ;(1), 2 ; \triangle, 3 ;+, 4 ; \times, 5 ; \mathbb{\square}, 6$. Each of the roots along one line is paired with a root along the other line. Note that the error in the numerical results increases with increasing $|\lambda|$ (see table 2).

n	$\underbrace{\text { 1st pair }}$		2nd pair		3rd pair		4th pair		5th pair		6th pair	
1	$4 \cdot 8550$	$2 \cdot 28055$	7.9491	4.9200	10.949	7.615	$13 \cdot 89$	10.354	16.9	13.0	$19 \cdot 2$	16
	(4.855	2-281)										
	$2 \cdot 28054$	4.85510	4.9198	$7 \cdot 9488$	$7 \cdot 617$	10.949	10.348	13.905	13.07	16.82	16.0	19.7
2	$6 \cdot 1316$	$3 \cdot 3001$	$9 \cdot 1691$	5.973	$12 \cdot 143$	8.683	$15 \cdot 12$	$11 \cdot 42$	$17 \cdot 8$	$14 \cdot 2$	22	16
	(6.131	3.301)										
	$3 \cdot 3002$	6.1316	5.9724	$9 \cdot 1690$	8.685	$12 \cdot 1415$	11.42	15.08	$14 \cdot 2$	$18 \cdot 0$	16.8	$20 \cdot 9$
3	$7 \cdot 4405$	$4 \cdot 5499$	10.437	$7 \cdot 2480$	13.384	9.968	16.31	12.75	$19 \cdot 2$	$15 \cdot 3$	23	$18 \cdot 3$
	(7-438	4.552)										
	4.5499	7-4407	7-2468	$10 \cdot 4349$	$\mathbf{9 . 9 7 4}$	13.390	12.73	16.31	$15 \cdot 4$	$19 \cdot 2$	$18 \cdot 3$	$22 \cdot 0$
4	8.7837	5.8798	11.748	8.597	14.681	11.325	17.65	14.09	20.0	$17 \cdot 0$		
	(8.772	5.844)										
	5.8799	8.7835	8.596	11.748	11-334	14.687	14.08	17.59	16.9	$20 \cdot 5$		
5	10.1481	7.241	13.090	9.977	16.02	12.723	18.95	15.4	21.53	$18 \cdot 6$		
	(10.12	7-255)										
	$7 \cdot 243$	10.1483	9.976	13.091	12.721	16.014	$15 \cdot 48$	18.93	18.26	21.81		
6	11.5270	$8 \cdot 6268$	14.449	11.368	17.38	$14 \cdot 10$	$20 \cdot 22$	$17 \cdot 1$				
	(11.50	8.680)										
	$8 \cdot 6261$	11.5261	11.370	14.455	$14 \cdot 11$	17-369	16.93	20.23				
7	12.9132	10.0180	15.827	12.772	18.79	$15 \cdot 50$	$21 \cdot 0$	18.3				
	(13.03	10.30)										
	10.0182	12.9134	12.770	$15 \cdot 829$	15.51	18.73	$18 \cdot 4$	21.7				
8	14.306	11.415	$17 \cdot 20$	14.18	$20 \cdot 2$	16.94						
	(15.68	11-16)										
	11.416	14.307	14.17	17.21	16.92	20.09						
9	15.703	12.8174	18.61	$15 \cdot 581$	21-4	18.4						
	(17.20	11.34)										
	12.8176	15.7041	15.581	18.601	18.4	21.5						

Tables 2. Calculated values of the complex coefficient, λ, in the fast-mode approximation (2) for $1 \leqslant n \leqslant 9$. The number of modes shown decreases for higher n because of decreasing accuracy. The accuracy of the coefficients, which also decreases for increasing $|\lambda|$, is indicated by the number of significant figures shown. The values in parentheses in the first column were calculated by Burridge (private communication).

omitted for clarity. BD denotes the values predicted by the approximation of Burridge \& Drazin (1969). [See Antosiewicz (1970, p. 478) and Gill (1965) for tables of the zeros of the Airy function and zeros of the integral of the Airy function.] The numerical values for $\alpha=10 \cdot 0$ and $0 \cdot 1$ and $n=0$, 1 and 9 are an extrapolation to $\alpha R \rightarrow \infty$ based on a fit of ($)$ to our wave speed results for $\alpha R=5 \times 10^{4}, 1 \times 10^{5}$, and 2×10^{5}. The modes labelled torsional are torsional modes for $n=0$ and are related, in the theory of Burridge \& Drazin, to zeros of the Airy function. The modes labelled ' meridional' are meridional for $n=0$ and ate related to zeros of the integral of the Airy function.

We wish to thank Mr William Torman who joined us in the latter stages of our research and spent many hours running most of our more recent results. This research could not have been carried out without the generous assistance of the SIT Computer Center and the ODU Computer Center.

REFERENCES

Antosiewicz, H. A. 1970 Bessel functions of fractional order. In Handbook of Mathematical Functions (ed. M. Abramowitz \& I. A. Stegun). Washington: National Bureau of Standards. Burridge, D. M. \& Drazin, P. G. 1969 Phys. Fluids 12, 264-265.
Cotton, F. W. 1977 A Study of the Linear Stability Problem for Viscous Incompressible Fluids in Circular Geometries by Means of a Matrix-Eigenvalue Approach. Ph.D. dissertation, Stevens Institute of Technology. University Microfilms International, Ann Arbor, Mi. 48106 (Order no. 77-26, 931).
Cotton, F. W. \& Salwen, H. 1976 beslib (Decus 10-272) and index (decus 10-273). DEC Users Library, Maynard, Mass. 01754.
Cotton, F. W., Salwen, H. \& Grosch, C. E. 1975 Bull. Am. Phys. Soc. 20, 1416.
Di Prima, R. C. \& Habetler, G. J. 1969 Arch. Rat. Mech. 34, 218-227.
Gill, A. E. 1965 J. Fluid Mech. 21, 145-172.
Lessen, M., Sadler, S. G. \& LiU, T. Y. 1968 Phys. Fluids 11, 1404-1409.
Salmen, H. \& Grosch, C. E. 1972 J. Fluid Mech. 54, 93-112.

[^0]: \dagger We again thank these authors for their numerical results which they sent us when we were preparing the figures of SG.
 \ddagger The complex wave speed c, is defined by the assumed form $e^{i \alpha(z-c t)+i n \theta}$ for the disturbances.

