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Linear stability of Poiseuille flow in a circular pipe
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Correction of an error in the matrix elements used by Salwen & Grosch (1972) has
brought the results of the matrix-eigenvalue calculation of the linear stability of
Hagen-Poiseuille flow into complete agreement with the numerical integration results
of Lessen, Sadler & Liu (1968) for azimuthal index n = 1. The n = 0 results were
unaffected by the error and the effect of the error for n > 1 is smaller than for n = 1.
The new calculations confirm the conclusion that the flow is stable to infinitesimal
disturbances.

Further calculations have led to the discovery of a degeneracy at Reynolds number
R = 61:452 + 0-003 and wavenumber & = 0-9874 + 0-0001, where the second and third
eigenmodes have equal complex wave speeds. The variation of wave speed for these
two modes has been studied in the vicinity of the degeneracy and shows similarities
to the behaviour near the degeneracies found by Cotton and Salwen (see Cotton 1977)
for rotating Hagen—Poiseuille flow. Finally, new results are given for n = 10 and 30;.
the n = 1 results are extended to K = 10%; and new results are presented for the
variation of the wave speed with aR at high Reynolds number. The high-R results
confirm both Burridge & Drazin’s (1969) slow-mode approximation and more recent
fast-mode results of Burridge.

In 1972, two of us published the results of a matrix-eigenvalue calculation (Salwen
& Grosch 1972; hereinafter referred to as SG) of the linear stability of Poiseuille flow
in a circular pipe to both axisymmetric and non-axisymmetric disturbances. That
paper was one of a number of papers (see SG for references) which led to the conclusion
that Hagen—Poiseuille flow is stable to infinitesimal disturbances. There was, however,
some doubt about the accuracy of the numerical results because of differences of up
to 309, between SG and the numerical integration of Lessen, Sadler & Liu (1968;
hereinafter referred to as LSL).

In the course of extending the techniques of SG to more general problems, we had
occasion to re-do some of the calculations and we discovered a sign error in one term
of the matrix elements, the correction of which eliminated the disagreement with
LSL (Cotton, Salwen & Grosch 1975; Cotton 1977). We report here on those corrections
as well as on newer calculations with the corrected matrix.

The method of calculation has been described in SG. Most of the results reported
here were obtained with a new program, designed to be extendable to an annular
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geometry, in which the matrices are obtained in double precision (19 significant
figures) and the eigenvalues are calculated in single precision (8 significant figures)
on the DEC system-10. Use of a new double-precision Bessel function routine (Cotton
& Salwen 1976) has extended the range to 0 < n < 30. Some of the eigenvalues have
been calculated in double precision as a test of round-off error and many have been
calculated for various matrix sizes as a test of truncationerror. Numerous checks
against the (corrected) single-precision routine of SG have also been run. Since the
two programs start with formulae which, though mathematically equivalent, are
considerably different in form, agreement between their results is a check against
programming error as well as round-off error. (It was the initial disagreement between
these programs which led to the discovery of the error in SG.)

The error in the SG program occurred only for n + 0; therefore, the n = 0 results
in SG need no correction. For n = 1, we present, in table 1, a comparison between
complex wave speeds calculated by LSLt, by the uncorrected SG program, and by the
corrected program (labelled CSG).{ Except for a 1 9 difference in mode 3 at R = 100
(which we believe to be a misprint in the LSL results), our new results agree with those
of LSL to four or five significant figures. In figure 1, we show the corrected wave
speeds for n = 1, « = 1, 10 € R < 108, To extend the earlier results to B = 10, we
used a maximum matrix size of 200 x 200. .

In figure 1, modes 2 and 3 appear to be degenerate at B ~ 61, since the real and
imaginary parts, ¢, and ¢ ; of ¢ both appear to be equal for the two modes. A detailed
study of the data reveals, however, that the ¢, curves for the two modes cross but the
¢ 4 curves approach each other closely and then move apart; for this reason, we pointed
out in SG that this was not a degeneracy. The recent discovery (Cotton 1977) of
degeneracies in the eigenvalues for rotating Poiseuille flow has led us to investigate
this point more closely.

Figure 2 shows expanded plots of ¢, and ¢, vs. aR for the two nearly-degenerate
modes, at & = 1-00 and 0-97, in the range 57 < aR < 63. For & = 1-00 the modes are
labelled 2 and 3; for « = 0-97, they are labelled 2’ and 3’. It is clear from this figure
that, at & = 1-00, the real parts cross but not the imaginary parts while, at a = 0-97,
the imaginary parts cross but not the real parts. Apart from this crossing behaviour
(which makes it impossible to uniquely order the modes without destroying the
continuity of ¢ as a function of «), the eigenvalues are quite similar at the two
values of «.

At each o between 0-97 and 1, there is a value of E at which either cg or c ; is the
same for the two modes. For one value of « in the range (simultaneously the highest
for which ¢, is the same and the lowest for which cg4 is the same), there is a value of
R for which ¢y and ¢, are both the same; i.e. the two modes have the same complex
wave speed ¢, = Cs.

In figure 3, we have plotted the curves for ¢, = ¢34 and ¢, ; = ¢35 in the «, (aR)
plane. They appear to be two parts of a single smooth curve, joining at the point of
degeneracy where ¢, = ¢;. The degeneracy occurs at & = 0-9874 + 0-0001, xR = 60-678
+0:001 (R ~ 61-452). Asa— 0, R -~ 63-6 along thec, , = c; , curveand, asaR -0,
a—>~ 2-5 along the c,5 = cy4 curve.

1 We again thank these authors for their numerical results which they sent us when we were

preparing the figures of SG.
I The complex wave speed ¢, is defined by the assumed form e*%-¢?+i0 for the disturbances.
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FiGUrE 1. Real and imaginary parts of the complex wave speed, ¢, a8 a function of the Reynolds
number, B, for n = 1, & = 1-00. The modes shown are the four least stable modes as R - 0. At
R = 108, they are the 1st, 19th, 2nd and 15th modes respectively.

At the point of degeneracy, there can, in principle, be either two linearly independent
eigenfunctions corresponding to the same eigenvalue or one eigenfunction and one
generalized eigenfunction (see, e.g. Di Prima & Habetler 1969). We cannot investigate
this directly, because our calculation yields a numerical estimate of the point of
degeneracy — not the exact value. At any point we choose, the eigenvalues will not
be identical, so there must be two different eigenvectors. To determine whether there
are two eigenvectors at the point of degeneracy, we studied the behaviour of

l(v21 vs)‘
[(7’2: '”2) (03’ va)]é’

the cosine of the ‘angle’ between the numerical eigenvectors, for (2, R) near the point

co8 0y =

(1)
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F1curk 2. Real and imaginary parts of the complex wave speed, ¢, as a function of R forn = 1,
a = 1-00 and 0-97. The modes shown are the 2nd and 3rd least stable modes as R - 0. They are
labelled (2, 3) for a = 1-00 and (27, 3’) for a = 0-97.

of degeneracy. As («, R) gets closer to the point of degeneracy, our values for cos 0,4
get closer to 1, reaching 0-999998 at the closest point. This indicates that the two
eigenvectors approach each other as (a, R) approaches the point of degeneracy, so that
there is one eigenvector and one generalized eigenvector corresponding to the de-
generate eigenvalue.

As examples of results for higher n, we present, in figures 4 and 5, the variation of
¢ with R for five and four modes, respectively, at » = 10 and 30, a = 1. Figure 4, for
n = 10, shows similar features to figure 1 — many crossings, a near degeneracy between
nmodes 4 and 5 at B ~ 1380, and a division into ‘fast’ and ‘slow’ modes (with ¢ -1
and O respectively) for high R — but the change-over from low- to high-R behaviour
takes place at a somewhat higher Reynolds number. Figure 5 is much simpler, at
least partly because all the modes plotted (the four least-stable modes as R — 0) are
slow modes at high R.

Extension of our calculations to higher Reynolds numbers (by means of larger
matrices) has made possible a further study of the high R behaviour of the eigenvalues
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Ficure 3. The curves cyp = ¢ 8nd ¢4 4 = ¢4 ¢ in the a, (aR) plane. O, ¢y ¢ = €35 +, Cogp = Cags
@, ¢, = ¢4, degeneracy. The arrow points to the location of the degeneracy at a = 0-9874 + 0-0001,
aR = 60-678+ 0-0001 (R ~ 61-452). The error in the location of each computed point is at least
two orders of magnitude less than the size of the symbols.

for the ‘fast’ and ‘slow’ eigenmodes. As in SG, we have tried to fit our results to the
forms given by Burridge & Drazin (1969),

¢=1-A/(aR)}, 2)
for ‘fast’ modes and
c=pf(aR), (3)
for ‘slow’ modes.

In the case of the fast modes, we were able to fit our high-R, low-a results to (2)
for a number of modes, with A essentially constant for aR 2 105, & < 0-1 and approxi-
mately constant foraR 2 104, < 1. Table 2lists the values of A obtainedfor1 < n < 9
and figure 6 shows the location in the complex plane of these coefficients for 1 < n < 6.
Our calculated results occur in pairs which are symmetrical about the line arg (1) = 7
and lie approximately on two lines nearly parallel to it. Burridge & Drazin no longer
claim that the approximation used in their paper is valid for these low-lying modes.
Instead, Burridge has carried out a new calculation of the coefficient, A, for the least

stable mode for 1 < n < 10.1 Burridge’s results for n < 9 are included in table 2 and
are in good agreement with our results for n < 7.

+ D. M. Burridge & P. G. Drazin, private communication.
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Fi16ure 4. Real and imaginary parts of the complex wave speed, ¢, as a function of the Reynolds
number, B, forn = 10, a = 1-00. The modes shown are the five least stable modes as B — 0.

For the slow modes, our values of («R)¥c are not constant, but vary slowly with aR,
presumably because we have not reached sufficiently high values of a 8. We therefore

fit our wave speeds for aR = 5x 104, 1 x 105 and 2 x 108, 0 < n < 9 to the form

¢ = p/(@B) +p, /(@R + o/ (xR)

in order to obtain an extrapolation to the value of x4 as aR ->c0. Some of our results
are presented in table 3, along with coefficients calculated from the formulae of
Burridge & Drazin. The remarkable agreement with their n-independent theory is
characteristic of all of our results for p.

(4)
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